The compact quantum group Uq(2) I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Compact Quantum Groups I

The notion of simple compact quantum group is introduced. As non-trivial (noncommutative and noncocommutative) examples, the following families of compact quantum groups are shown to be simple: (a) The universal quantum groups Bu(Q) for Q ∈ GL(n,C) satisfying QQ̄ = ±In, n ≥ 2; (b) The quantum automorphism groups Aaut(B, τ) of finite dimensional C ∗-algebras B endowed with the canonical trace τ w...

متن کامل

Quantum subgroups of the compact quantum group SU_-1(3)

We study the (compact) quantum subgroups of the compact quantum group SU−1(3): we show that any non-classical such quantum subgroup is a twist of a compact subgroup of SU(3) or is isomorphic to a quantum subgroup of U−1(2).

متن کامل

galois extension for a compact quantum group

The aim of this paper is to introduce the quantum analogues of torsors for a compact quantum group and to investigate their relations with representation theory. Let A be a Hopf algebra over a field k. A theorem of Ulbrich asserts that there is an equivalence of categories between neutral fibre functors on the category of finitedimensional A-comodules and A-Galois extensions of k. We give the c...

متن کامل

The Quantum Double of a (locally) Compact Group

We generalise the quantum double construction of Drinfel’d to the case of the (Hopf) algebra of suitable functions on a compact or locally compact group. We will concentrate on the ∗-algebra structure of the quantum double. If the conjugacy classes in the group are countably separated, then we classify the irreducible ∗-representations by using the connection with so–called transformation group...

متن کامل

The Haar Measure on a Compact Quantum Group

Let A be a C*-algebra with an identity. Consider the completed tensor product A®A of A with itself with respect to the minimal or the maximal C*-tensor product norm. Assume that A: A —>A®A is a non-zero •-homomorphism such that (A ® t)A = (i ® A)A where / is the identity map. Then A is called a comultiplication on A . The pair (A, A) can be thought of as a 'compact quantum semi-group'. A left i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2005

ISSN: 0024-3795

DOI: 10.1016/j.laa.2005.06.004